Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
J Neurosci ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561226

Aging dogs serve as a valuable preclinical model for Alzheimer's disease (AD) due to their natural age-related development of beta-amyloid (Aß) plaques, human-like metabolism, and large brains that are ideal for studying structural brain aging trajectories from serial neuroimaging. Here we examined the effects of chronic treatment with the calcineurin inhibitor (CNI) tacrolimus or the nuclear factor of activated T cells (NFAT)-inhibiting compound Q134R on age-related canine brain atrophy from a longitudinal study in middle-aged beagles (36 females, 7 males) undergoing behavioral enrichment. Annual MRI was analyzed using modern, automated techniques for region-of-interest -based and voxel-based volumetric assessments. We found that the frontal lobe showed accelerated atrophy with age, while the caudate nucleus remained relatively stable. Remarkably, the hippocampus increased in volume in all dogs. None of these changes were influenced by tacrolimus or Q134R treatment. Our results suggest that behavioral enrichment can prevent atrophy and increase the volume of the hippocampus but does not prevent aging-associated prefrontal cortex atrophy.Significance Statement Aging canines naturally show significant neuropathological similarities to human aging and AD, making them valuable translational models for testing disease-modifying treatments. We applied modern, state-of-the-art longitudinal volumetric analysis approaches to evaluate treatment effects from structural MRI in a large cohort of middle-aged beagles treated with the FDA approved calcineurin inhibitor, tacrolimus, or the experimental NFAT inhibitor, Q134R, while undergoing extensive behavioral enrichment. We show increased hippocampal volumes across all dogs, even control placebo dogs, compelling evidence for a strong enrichment-related benefit on hippocampal structural integrity. Our findings are the first of its kind to demonstrate benefits of behavioral intervention on longitudinal structural brain changes in a higher mammalian model of aging and AD.

2.
J Neurosci Methods ; 402: 110012, 2024 02.
Article En | MEDLINE | ID: mdl-37984591

BACKGROUND: Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase. In healthy tissue, CN exists mainly as a full-length (∼60 kDa) highly-regulated protein phosphatase involved in essential cellular functions. However, in diseased or injured tissue, CN is proteolytically converted to a constitutively active fragment that has been causatively-linked to numerous pathophysiologic processes. These calpain-cleaved CN fragments (∆CN) appear at high levels in human brain at early stages of cognitive decline associated with Alzheimer's disease (AD). NEW METHOD: We developed a monoclonal antibody to ∆CN, using an immunizing peptide corresponding to the C-terminal end of the ∆CN fragment. RESULTS: We obtained a mouse monoclonal antibody, designated 26A6, that selectively detects ∆CN in Western analysis of calpain-cleaved recombinant human CN. Using this antibody, we screened both pathological and normal human brain sections provided by the University of Kentucky's Alzheimer's Disease Research Center. 26A6 showed low reactivity towards normal brain tissue, but detected astrocytes both surrounding AD amyloid plaques and throughout AD brain tissue. In brain tissue with infarcts, there was considerable concentration of 26A6-positive astrocytes within/around infarcts, suggesting a link with anoxic/ischemia pathways. COMPARISON WITH EXISTING METHOD: The results obtained with the new monoclonal are similar to those obtained with a polyclonal we had previously developed. However, the monoclonal is an abundant tool available to the dementia research community. CONCLUSIONS: The new monoclonal 26A6 antibody is highly selective for the ∆CN proteolytic fragment and labels a subset of astrocytes, and could be a useful tool for marking insidious brain pathology and identifying novel astrocyte phenotypes.


Alzheimer Disease , Calpain , Mice , Animals , Humans , Calpain/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Alzheimer Disease/metabolism , Astrocytes/metabolism , Antibodies, Monoclonal/metabolism , Infarction/metabolism , Infarction/pathology
3.
J Cereb Blood Flow Metab ; 44(4): 595-610, 2024 Apr.
Article En | MEDLINE | ID: mdl-37988134

Research on the cerebrovasculature may provide insights into brain health and disease. Immunohistochemical staining is one way to visualize blood vessels, and digital pathology has the potential to revolutionize the measurement of blood vessel parameters. These tools provide opportunities for translational mouse model research. However, mouse brain tissue presents a formidable set of technical challenges, including potentially high background staining and cross-reactivity of endogenous IgG. Formalin-fixed paraffin-embedded (FFPE) and fixed frozen sections, both of which are widely used, may require different methods. In this study, we optimized blood vessel staining in mouse brain tissue, testing both FFPE and frozen fixed sections. A panel of immunohistochemical blood vessel markers were tested (including CD31, CD34, collagen IV, DP71, and VWF), to evaluate their suitability for digital pathological analysis. Collagen IV provided the best immunostaining results in both FFPE and frozen fixed murine brain sections, with highly-specific staining of large and small blood vessels and low background staining. Subsequent analysis of collagen IV-stained sections showed region and sex-specific differences in vessel density and vessel wall thickness. We conclude that digital pathology provides a useful tool for relatively unbiased analysis of the murine cerebrovasculature, provided proper protein markers are used.


Brain , Collagen , Male , Female , Mice , Animals , Paraffin Embedding
4.
J Alzheimers Dis ; 95(2): 599-602, 2023.
Article En | MEDLINE | ID: mdl-37661889

Numerous preclinical and human tissue studies implicate the protein phosphatase calcineurin (CN) as a pathophysiologic mechanism in Alzheimer's disease (AD) and other neurodegenerative conditions. Using public electronic records of tens of thousands of individuals across the United States, Silva et al. (2023) show that use of the FDA-approved CN inhibitor, tacrolimus (for purposes of immunosuppression) is also associated with reduced prevalence of dementia-related symptoms. Notably, the study controls for age, sex, and race as well as multiple risk factors for AD. The results suggest that tacrolimus, and possibly other immunosuppressants could be repurposed for the treatment of AD-related dementia.


Alzheimer Disease , Cognitive Dysfunction , Humans , Calcineurin Inhibitors/therapeutic use , Tacrolimus/therapeutic use , Cognitive Dysfunction/drug therapy , Immunosuppressive Agents/therapeutic use
5.
Front Cell Neurosci ; 17: 895017, 2023.
Article En | MEDLINE | ID: mdl-37006470

Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer's disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic.

6.
J Neurosci ; 43(10): 1797-1813, 2023 03 08.
Article En | MEDLINE | ID: mdl-36746627

Despite the indispensable role that astrocytes play in the neurovascular unit, few studies have investigated the functional impact of astrocyte signaling in cognitive decline and dementia related to vascular pathology. Diet-mediated induction of hyperhomocysteinemia (HHcy) recapitulates numerous features of vascular contributions to cognitive impairment and dementia (VCID). Here, we used astrocyte targeting approaches to evaluate astrocyte Ca2+ dysregulation and the impact of aberrant astrocyte signaling on cerebrovascular dysfunction and synapse impairment in male and female HHcy diet mice. Two-photon imaging conducted in fully awake mice revealed activity-dependent Ca2+ dysregulation in barrel cortex astrocytes under HHcy. Stimulation of contralateral whiskers elicited larger Ca2+ transients in individual astrocytes of HHcy diet mice compared with control diet mice. However, evoked Ca2+ signaling across astrocyte networks was impaired in HHcy mice. HHcy also was associated with increased activation of the Ca2+/calcineurin-dependent transcription factor NFAT4, which has been linked previously to the reactive astrocyte phenotype and synapse dysfunction in amyloid and brain injury models. Targeting the NFAT inhibitor VIVIT to astrocytes, using adeno-associated virus vectors, led to reduced GFAP promoter activity in HHcy diet mice and improved functional hyperemia in arterioles and capillaries. VIVIT expression in astrocytes also preserved CA1 synaptic function and improved spontaneous alternation performance on the Y maze. Together, the results demonstrate that aberrant astrocyte signaling can impair the major functional properties of the neurovascular unit (i.e., cerebral vessel regulation and synaptic regulation) and may therefore represent a promising drug target for treating VCID and possibly Alzheimer's disease and other related dementias.SIGNIFICANCE STATEMENT The impact of reactive astrocytes in Alzheimer's disease and related dementias is poorly understood. Here, we evaluated Ca2+ responses and signaling in barrel cortex astrocytes of mice fed with a B-vitamin deficient diet that induces hyperhomocysteinemia (HHcy), cerebral vessel disease, and cognitive decline. Multiphoton imaging in awake mice with HHcy revealed augmented Ca2+ responses in individual astrocytes, but impaired signaling across astrocyte networks. Stimulation-evoked arteriole dilation and elevated red blood cell velocity in capillaries were also impaired in cortex of awake HHcy mice. Astrocyte-specific inhibition of the Ca2+-dependent transcription factor, NFAT, normalized cerebrovascular function in HHcy mice, improved synaptic properties in brain slices, and stabilized cognition. Results suggest that astrocytes are a mechanism and possible therapeutic target for vascular-related dementia.


Alzheimer Disease , Hyperhomocysteinemia , Mice , Male , Female , Animals , Alzheimer Disease/metabolism , Astrocytes/metabolism , Hyperhomocysteinemia/metabolism , Hyperhomocysteinemia/pathology , Diet , Transcription Factors/metabolism
7.
Aging Cell ; 20(7): e13416, 2021 07.
Article En | MEDLINE | ID: mdl-34117818

Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3-4 months old) infused with oligomeric Aß peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aß plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders.


Alzheimer Disease/genetics , NFATC Transcription Factors/antagonists & inhibitors , Plaque, Amyloid/physiopathology , Animals , Disease Models, Animal , Mice
8.
J Neurosci ; 41(23): 5124-5133, 2021 06 09.
Article En | MEDLINE | ID: mdl-33952632

The overexpression of calcineurin leads to astrocyte hyperactivation, neuronal death, and inflammation, which are characteristics often associated with pathologic aging and Alzheimer's disease. In this study, we tested the hypothesis that tacrolimus, a calcineurin inhibitor, prevents age-associated microstructural atrophy, which we measured using higher-order diffusion MRI, in the middle-aged beagle brain (n = 30, male and female). We find that tacrolimus reduces hippocampal (p = 0.001) and parahippocampal (p = 0.002) neurite density index, as well as protects against an age-associated increase in the parahippocampal (p = 0.007) orientation dispersion index. Tacrolimus also protects against an age-related decrease in fractional anisotropy in the prefrontal cortex (p < 0.0001). We also show that these microstructural alterations precede cognitive decline and gross atrophy. These results support the idea that calcineurin inhibitors may have the potential to prevent aging-related pathology if administered at middle age.SIGNIFICANCE STATEMENT Hyperactive calcineurin signaling causes neuroinflammation and other neurobiological changes often associated with pathologic aging and Alzheimer's disease (AD). Controlling the expression of calcineurin before gross cognitive deficits are observable might serve as a promising avenue for preventing AD pathology. In this study, we show that the administration of the calcineurin inhibitor, tacrolimus, over 1 year prevents age- and AD-associated microstructural changes in the hippocampus, parahippocampal cortex, and prefrontal cortex of the middle-aged beagle brain, with no noticeable adverse effects. Tacrolimus is already approved by the Food and Drug Administration for use in humans to prevent solid organ transplant rejection, and our results bolster the promise of this drug to prevent AD and aging-related pathology.


Aging/drug effects , Brain/drug effects , Brain/pathology , Calcineurin Inhibitors/pharmacology , Tacrolimus/pharmacology , Aging/pathology , Animals , Atrophy/pathology , Dogs , Female , Male
9.
Ageing Res Rev ; 68: 101335, 2021 07.
Article En | MEDLINE | ID: mdl-33812051

Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer's disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.


Alzheimer Disease , Astrocytes , Brain , Central Nervous System , Humans , Signal Transduction
10.
Nat Neurosci ; 24(3): 312-325, 2021 03.
Article En | MEDLINE | ID: mdl-33589835

Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.


Aging/pathology , Astrocytes/pathology , Brain/pathology , Spinal Cord/pathology , Animals , Brain Diseases/pathology , Brain Injuries/pathology , Humans , Spinal Cord Injuries/pathology
11.
Aging Cell ; 19(10): e13220, 2020 10.
Article En | MEDLINE | ID: mdl-32852134

As demonstrated by increased hippocampal insulin receptor density following learning in animal models and decreased insulin signaling, receptor density, and memory decline in aging and Alzheimer's diseases, numerous studies have emphasized the importance of insulin in learning and memory processes. This has been further supported by work showing that intranasal delivery of insulin can enhance insulin receptor signaling, alter cerebral blood flow, and improve memory recall. Additionally, inhibition of insulin receptor function or expression using molecular techniques has been associated with reduced learning. Here, we sought a different approach to increase insulin receptor activity without the need for administering the ligand. A constitutively active, modified human insulin receptor (IRß) was delivered to the hippocampus of young (2 months) and aged (18 months) male Fischer 344 rats in vivo. The impact of increasing hippocampal insulin receptor expression was investigated using several outcome measures, including Morris water maze and ambulatory gait performance, immunofluorescence, immunohistochemistry, and Western immunoblotting. In aged animals, the IRß construct was associated with enhanced performance on the Morris water maze task, suggesting that this receptor was able to improve memory recall. Additionally, in both age-groups, a reduced stride length was noted in IRß-treated animals along with elevated hippocampal insulin receptor levels. These results provide new insights into the potential impact of increasing neuronal insulin signaling in the hippocampus of aged animals and support the efficacy of molecularly elevating insulin receptor activity in vivo in the absence of the ligand to directly study this process.


Memory Disorders/metabolism , Receptor, Insulin/metabolism , Aging/metabolism , Animals , Genetic Engineering , Humans , Male , Maze Learning , Memory Disorders/genetics , Rats , Rats, Inbred F344 , Receptor, Insulin/biosynthesis , Receptor, Insulin/genetics , Signal Transduction
12.
Nano Lett ; 20(8): 6135-6141, 2020 08 12.
Article En | MEDLINE | ID: mdl-32628854

We present the application of multiphoton in vivo fluorescence correlation spectroscopy (FCS) of fluorescent nanoparticles for the measurement of cerebral blood flow with excellent spatial and temporal resolution. Through the detection of single nanoparticles within the complex vessel architecture of a live mouse, this new approach enables the quantification of nanoparticle dynamics occurring within the vasculature along with simultaneous measurements of blood flow properties in the brain. In addition to providing high resolution blood flow measurements, this approach enables real-time quantification of nanoparticle concentration, degradation, and transport. This method is capable of quantifying flow rates at each pixel with submicron resolution to enable monitoring of dynamic changes in flow rates in response to changes in the animal's physiological condition. Scanning the excitation beam using FCS provides pixel by pixel mapping of flow rates with subvessel resolution across capillaries 300 µm deep in the brains of mice.


Microscopy, Fluorescence, Multiphoton , Nanoparticles , Animals , Cerebrovascular Circulation , Mice , Spectrometry, Fluorescence
13.
Sci Rep ; 10(1): 6956, 2020 04 24.
Article En | MEDLINE | ID: mdl-32332783

Synapse loss occurs early and correlates with cognitive decline in Alzheimer's disease (AD). Synaptotoxicity is driven, at least in part, by amyloid-beta oligomers (Aßo), but the exact synaptic components targeted by Aßo remain to be identified. We here tested the hypotheses that the post-synaptic protein Neuroligin-1 (NLGN1) is affected early in the process of neurodegeneration in the hippocampus, and specifically by Aßo, and that it can modulate Aßo toxicity. We found that hippocampal NLGN1 was decreased in patients with AD in comparison to patients with mild cognitive impairment and control subjects. Female 3xTg-AD mice also showed a decreased NLGN1 level in the hippocampus at an early age (i.e., 4 months). We observed that chronic hippocampal Aßo injections initially increased the expression of one specific Nlgn1 transcript, which was followed by a clear decrease. Lastly, the absence of NLGN1 decreased neuronal counts in the dentate gyrus, which was not the case in wild-type animals, and worsens impairment in spatial learning following chronic hippocampal Aßo injections. Our findings support that NLGN1 is impacted early during neurodegenerative processes, and that Aßo contributes to this effect. Moreover, our results suggest that the presence of NLGN1 favors the cognitive prognosis during Aßo-driven neurodegeneration.


Alzheimer Disease/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Hippocampus/metabolism , Aging/genetics , Aging/physiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Blotting, Western , Cell Adhesion Molecules, Neuronal/genetics , Cell Survival/genetics , Cell Survival/physiology , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Morris Water Maze Test
14.
J Bodyw Mov Ther ; 24(1): 289-299, 2020 Jan.
Article En | MEDLINE | ID: mdl-31987559

Exercise is vital to the management of low back pain (LBP). However, research, social media, and fitness industry interests can leave therapists confused about best practice in exercise prescription for this clinical condition. The 3R's approach to back rehabilitation is introduced as an evidence-based framework for developing patient specific exercise throughout the back-pain journey. Clinical guidelines for the management of LBP are presented, and both exercise and psychological considerations are overviewed. The contrast between biomedical and biopsychosocial models of healthcare is introduced in relation to LBP and the requirements of a successful rehabilitation programme. Interacting factors in LBP, red flags, and motor skill classification are considered. The concept of tissue capacity is introduced, and the healing timescale addressed. Both are used as a foundation for exercise choice and progression. Simple methods of structuring an exercise programme are drawn from the fitness industry and adapted for use in rehabilitation. The 3R's approach consists of 3 interrelated and overlapping phases - reactive, recovery, and resilience. Treatment aims for each are introduced with guidance given to indicate appropriate patient progression between phases. Exercise examples of each stage are illustrated with consideration given to clinical reasoning, teaching method, safety and effectiveness.


Low Back Pain/psychology , Low Back Pain/rehabilitation , Pain Management/methods , Physical Therapy Modalities , Psychotherapy/methods , Cognition , Comorbidity , Exercise Therapy/methods , Humans , Life Style , Mental Health , Pain Measurement , Practice Guidelines as Topic , Socioeconomic Factors , Time Factors
15.
Mol Cell Neurosci ; 102: 103418, 2020 01.
Article En | MEDLINE | ID: mdl-31705957

AIMS: The current study utilizes the adeno-associated viral gene transfer system in the CAMKIIα-tTA mouse model to overexpress human wild type TDP-43 (wtTDP-43) and α-synuclein (α-Syn) proteins. The co-existence of these proteins is evident in the pathology of neurodegenerative disorders such as frontotemporal lobar degeneration (FTLD), Parkinson disease (PD), and dementia with Lewy bodies (DLB). METHODS: The novel bicistronic recombinant adeno-associated virus (rAAV) serotype 9 drives wtTDP-43 and α-Syn expression in the hippocampus via "TetO" CMV promoter. Behavior, electrophysiology, and biochemical and histological assays were used to validate neuropathology. RESULTS: We report that overexpression of wtTDP-43 but not α-Syn contributes to hippocampal CA2-specific pyramidal neuronal loss and overall hippocampal atrophy. Further, we report a reduction of hippocampal long-term potentiation and decline in learning and memory performance of wtTDP-43 expressing mice. Elevated wtTDP-43 levels induced selective degeneration of Purkinje cell protein 4 (PCP-4) positive neurons while both wtTDP-43 and α-Syn expression reduced subsets of the glutamate receptor expression in the hippocampus. CONCLUSIONS: Overall, our findings suggest the significant vulnerability of hippocampal neurons toward elevated wtTDP-43 levels possibly via PCP-4 and GluR-dependent calcium signaling pathways. Further, we report that wtTDP-43 expression induced selective CA2 subfield degeneration, contributing to the deterioration of the hippocampal-dependent cognitive phenotype.


CA2 Region, Hippocampal/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , DNA-Binding Proteins/metabolism , Long-Term Potentiation , Memory , Animals , CA2 Region, Hippocampal/physiology , DNA-Binding Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Maze Learning , Mice , Neuropeptides/genetics , Neuropeptides/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , alpha-Synuclein/metabolism
16.
Front Neurosci ; 13: 1189, 2019.
Article En | MEDLINE | ID: mdl-31749679

The brain-blood partition coefficient (BBPC) is necessary for quantifying cerebral blood flow (CBF) when using tracer based techniques like arterial spin labeling (ASL). A recent improvement to traditional MRI measurements of BBPC, called calibrated short TR recovery (CaSTRR), has demonstrated a significant reduction in acquisition time for BBPC maps in mice. In this study CaSTRR is applied to a cohort of healthy canines (n = 17, age = 5.0 - 8.0 years) using a protocol suited for application in humans at 3T. The imaging protocol included CaSTRR for BBPC maps, pseudo-continuous ASL for CBF maps, and high resolution anatomical images. The standard CaSTRR method of normalizing BBPC to gadolinium-doped deuterium oxide phantoms was also compared to normalization using hematocrit (Hct) as a proxy value for blood water content. The results show that CaSTRR is able to produce high quality BBPC maps with a 4 min acquisition time. The BBPC maps demonstrate significantly higher BBPC in gray matter (0.83 ± 0.05 mL/g) than in white matter (0.78 ± 0.04 mL/g, p = 0.006). Maps of CBF acquired with pCASL demonstrate a negative correlation between gray matter perfusion and age (p = 0.003). Voxel-wise correction for BBPC is also shown to improve contrast to noise ratio between gray and white matter in CBF maps. A novel aspect of the study was to show that that BBPC measurements can be calculated based on the known Hct of the blood sample placed in scanner. We found a strong correlation (R 2 = 0.81 in gray matter, R 2 = 0.59 in white matter) established between BBPC maps normalized to the doped phantoms and BBPC maps normalized using Hct. This obviates the need for doped water phantoms which simplifies both the acquisition protocol and the post-processing methods. Together this suggests that CaSTRR represents a feasible, rapid method to account for BBPC variability when quantifying CBF. As canines have been used widely for aging and Alzheimer's disease studies, the CaSTRR method established in the animals may further improve CBF measurements and advance our understanding of cerebrovascular changes in aging and neurodegeneration.

18.
Front Aging Neurosci ; 10: 287, 2018.
Article En | MEDLINE | ID: mdl-30297999

Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase with high abundance in nervous tissue. Though enriched in neurons, CN can become strongly induced in subsets of activated astrocytes under different pathological conditions where it interacts extensively with the nuclear factor of activated T cells (NFATs). Recent work has shown that regions of small vessel damage are associated with the upregulation of a proteolized, highly active form of CN in nearby astrocytes, suggesting a link between the CN/NFAT pathway and chronic cerebrovascular disease. In this Mini Review article, we discuss CN/NFAT signaling properties in the context of vascular disease and use previous cell type-specific intervention studies in Alzheimer's disease and traumatic brain injury models as a framework to understand how astrocytic CN/NFATs may couple vascular pathology to neurodegeneration and cognitive loss.

19.
J Neurochem ; 147(1): 8-11, 2018 10.
Article En | MEDLINE | ID: mdl-30256415

Ca2+ dysregulation is a hallmark of Alzheimer disease (AD) and affects numerous and diverse signaling cascades linked to neurodegeneration and cognitive decline. Increasing evidence suggests that the protein phosphatase calcineurin (CN) mediates or exacerbates AD pathophysiology through activation of the NFAT family of transcription factors. In this editorial, we discuss work by Hopp et al, , which uncovered a novel role of CN/NFAT signaling in controlling global gene expression in hippocampal neurons of intact mice. Interestingly, the authors showed that elevated CN expression/activity in neurons plays a major role in transcriptional suppression. Many of the genes differentially affected by CN were related to synapse function and NFAT binding, and exhibited similar patterns of downregulation in previous studies on human AD biospecimens. Results are discussed in context with emerging roles for CN/NFATs in astrocyte signaling as they pertain to Ca2+ dysregulation and the progression of neurodegeneration and cognitive loss with AD.


Alzheimer Disease , Calcineurin , Animals , Brain , Humans , Mice , NFATC Transcription Factors , Neurons
20.
Front Aging Neurosci ; 10: 199, 2018.
Article En | MEDLINE | ID: mdl-30038565

Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte activation. Though the activated astrocyte phenotype is complex, cell-type targeting approaches have revealed a number of detrimental roles of activated astrocytes involving neuroinflammation, release of synaptotoxic factors and loss of glutamate regulation. Work from our lab and others has suggested that the Ca2+/calmodulin dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+ dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated form of CN appears at high levels in activated astrocytes in both human tissue and rodent tissue around regions of amyloid and vascular pathology. Similar upregulation of the CN-dependent transcription factor nuclear factor of activated T cells (NFAT4) also appears in activated astrocytes in mouse models of Alzheimer's disease (ADs) and traumatic brain injury (TBI). Major consequences of hyperactivated CN/NFAT4 signaling in astrocytes are neuroinflammation, synapse dysfunction and glutamate dysregulation/excitotoxicity, which will be covered in this review article.

...